Бесстыковой путь и особенности его конструкции

Информация » Бесстыковой путь и особенности его конструкции

Страница 7

Все приведенные факты не могут быть неизвестны тем, кто утверждает, что невозможны выбросы и, как их следствие, крушения под движущимися поездами. Несоответствие теоретических положений, на которых базируется гипотеза о невозможности выброса бесстыкового пути под поездами, реальным процессам заключается, во-первых, в том, что, как утверждает ее автор, «при расследовании крушений и аварий поездов на бесстыковом пути необходимо руководствоваться прежде всего законами механики с проявлением потенциальной энергии, накапливаемой в рельсовых плетях от нагревания». Это означает исключение из рассмотрения всех других сил и перемещений во времени, влияющих на кинетику механических процессов сил и моментов сил инерции в конструктивных элементах пути и вагона, динамических сил угона в рельсовых плетях и еще ряда механических факторов, входящих в единую механическую систему путь — подвижной состав.

Во-вторых, в расчетной схеме реальная конструкция вагонов, состоящих из кузова, отдельных тележек, колесных пар, рессорного подвешивания и т. п., заменена неким неопределенным понятием «пригруз», не имеющим конкретного смысла с точки зрения механики. Между тем опыты, проведенные Федеральной железнодорожной администрацией США, показали, что наличие движущегося экипажа, создающего динамическую нагрузку, может весьма заметно понижать устойчивость бесстыкового пути по сравнению с той, которая у него была при отсутствии поездной нагрузки (рис. 1). Это происходит из-за образования волны подъема рельсо-шпальной решетки над ее основанием. При большой длине вагонов температура динамического выброса пути может быть на 20 – 30 % ниже соответствующей для статики. Как указывает в своей статье А. Зарембски, это согласуется и с результатами опытов, проводившихся в Западной Европе.

Рис. 1. Боковое сопротивление пути под открытым хоппером:

1 — в статике (без экипажа); 2 — при поднятии рельсо-шпальной решетки под поездом

В-третьих, автором гипотезы из рассмотрения исключается продолжительность прохождения межтележечными пространствами вагонов по горизонтальным и вертикальным неровностям пути; однако в ряде случаев возможен практически мгновенный выброс рельсо-шпальной решетки, когда продольные силы в плетях находятся на критическом уровне.

Кроме того, при некоторых размерах и формах неровностей в продольном профиле рельсовых плетей, в случае действия в рельсовых плетях больших продольных сжимающих сил, происходят отрыв некоторых подошв шпал, прекращение действия на них вертикальных нагрузок, а иногда и отрыв некоторых групп шпал от балластных постелей. Это вполне может произойти в момент прохода данного места межтележечными пространствами, а в результате сопротивление таких шпал поперечному сдвигу становится практически равным нулю.

Еще в 30-е годы и несколько позже, когда применялись легкие типы рельсов, вертикальное выпучивание звеньевого пути под действием продольных сжимающих сил в рельсах изучали многие ученые-путейцы, решая вопрос о возможности использования так называемых длинных рельсов (профессора Н. Т. Митюшин, К. Н. Мищенко, доценты М. П. Никифоров, М. Т. Членов и др.). Однако вначале проблему выпучивания связывали с так называемой обратной волной изгиба балок, лежащих на сплошном упругом основании, при их нагружении вертикальными силами. Лишь К. Н. Мищенко в 1950 г. опубликовал расчеты устойчивости бесстыкового пути в вертикальной плоскости при действии продольных сжимающих температурных сил в рельсовых плетях бесстыкового пути. Однако и методы расчетов К. Н. Мищенко были неточны, поскольку основывались на гипотезе Винклера. Эти «неточности» выявил проф. В. Н. Данилов, используя предложенный им совершенно новый и оригинальный математический аппарат — теорию функций абсолютного переменного. Но главный шаг в этом направлении был сделан в 1961 – 1962 гг. канд. техн. наук Е. М. Бромбергом, который впервые в мире с помощью прибора, предложенного инж. В. В. Богословским, исследовал и зарегистрировал результаты вертикального выпучивания рельсовых плетей реальных конструкций бесстыкового пути в эксплуатационных и лабораторных условиях на Экспериментальном кольце ВНИИЖТа и в Институте пути. На рис. 2 приведены траектории горизонтальных поперечных и вертикальных перемещений рельсовых плетей бесстыкового пути при нагреве их до критической температуры. Этот график заимствован из статьи Е. М. Бромберга, в которой он пишет, что процесс выброса весьма сложен, развивается на значительной длине пути и протекает не во всех опытах одинаково. Например, в одном опыте поднятие рельсо-шпальной решетки на высоту 12 – 15 мм наблюдалось даже на расстоянии 45 м от центра развивающегося выброса пути; в другом такое же выпучивание наблюдалось на расстоянии 43 м, в третьем поднятие рельсо-шпальной решетки на 11 – 13 мм происходило на расстоянии 35 м и т. д.

Страницы: 2 3 4 5 6 7 8 9 10

Еще по теме:

Содержание модернизации
Модернизация заключается в том, что на двигатель ЯМЗ-534 для обеспечения пуска двигателя при пониженных температурах вместо электрофакельного устройства устанавливается принципиально новая система для пускового наддува двигателя сжатым воздухом из тормозной системы автомобиля. Общие положения эконо ...

Определение основных параметров технологического процесса
К основным параметрам технологического процесса относятся: протяженность участка основных работ в окно (фронт работ), продолжительность окна и периодичность предоставления окон. Определение фронта работ в окно Фронта работ в окно рассчитывается по формуле: Lфр=Q*n/(T-∑t), где Q– годовой объем ...

Распределение трудоемкости зон ТО по видам работ
Распределение трудоемкости по видам работ Трудоемкость каждого вида работ принимается на основании процентного распределения по ОНТП – АТП – СТО ТВР=(ТiУЧ×aВР)/100 (24) где, aВР - процент от общей трудоемкости, приходящийся на определенный вид работ согласно ОНТП - АТП - СТО - 80 Распределени ...


Навигация

Copyright © 2021 - All Rights Reserved - www.transpexplore.ru