Постановка задачи управления безопасным движением. Динамическое программирование

Информация » Задачи управления безопасным движением при встрече с препятствием и выбор метода решения » Постановка задачи управления безопасным движением. Динамическое программирование

Страница 4

Заметим, что последнее слагаемое может быть учтено, если переменная х (t) есть случайный процесс, в котором присутствует составляющая типа белого шума с бесконечно большой дисперсией D, равной где — коэффициент диффузии. Подставим полученный результат в правую часть уравнения (1.8). С учетом того, что функции и от управления на зависят как результаты уже проведенной оптимизации и могут быть вынесены за фигурные скобки, уравнение (3.8) можно представить в виде

Перенеся первые два члена в левую часть, разделим уравнение на :

Последними двумя слагаемыми при можно пренебречь из-за их малости. Тогда с учетом случайного характера оптимизируемого процесса получим уравнение.

.

Если рассматривать детерминированный случай при и, наконец, исследовать поведение системы с п координатами и r управлениями ,то можно получить известное уравнение Беллмана в частных производных

Очень важно подчеркнуть, что уравнение Беллмана (1.10) является нелинейным дифференциальным уравнением, поскольку в нем присутствует операция минимизации. В векторной форме его можно записать так:

Где,

Поясним теперь смысл слагаемых, входящих в правую часть уравнения (1.10). Первое слагаемое характеризует потери на текущем шаге, второе слагаемое в виде суммы членов оценивает последствия от принятого решения в будущем. Причем каждый член учитывает изменение текущего состояния по координате xi, возникающее за счет управления , с помощью производной , которая умножается на свой весовой коэффициент . Таким образом, производные есть своего рода «коэффициенты чувствительности» оставшегося значения минимизируемого функционала к изменениям текущих значений фазовых координат . Это соображение иллюстрирует дальновидность метода и оживляет представление о функции Беллмана как о некоторой функции отклика критерия оптимальности на измененные вектора состояния . Часто в технических задачах можно физически уяснить себе характер зависимости функции S от фазовых координат системы. Поэтому удается найти управление в функции от состояния фазовых координата , что позволяет прийти к замкнутой системе управления с обратной связью и тем самым ускорить решение задачи, что будет показано ниже в примерах.

С помощью динамического программирования можно решать задачи и с незакрепленным временем управления . В частности, для автономных систем можно получить уравнение Беллмана в виде

где функция от времени не зависит. Для задач максимального быстродействия в уравнении (1.11) нужно ввести замену .

В заключение отметим, что вывод уравнений (1.10) и (1.11) требовал дифференцируемости функции S. Однако существуют задачи, где эта функция не является дифференцируемой, а оптимальное управление существует. Поясним на примере, что на линии переключения функция S всегда недифференцируема.

Страницы: 1 2 3 4 5 6

Еще по теме:

Расчеты ожидаемых параметров по температуре конца сжатия
Как видно из главы 2.2 для надежного пуска дизеля важна высокая температура конца сжатия. Во время работы двигателя на рабочих режимах на двигателе ЯМЗ-534 работает турбокомпрессор, который обеспечивает требуемую массу свежего заряда в цилиндре вследствие повышения давления впуска. При повышении да ...

Разработка мероприятий по обеспечению безопасности движения
Для производства больших по объему ремонтных и строительных работ в графике движения поездов должны предусматриваться «окна» и учитываться ограничения скорости, вызываемые этими работами. Для выполнения работ по текущему содержанию пути, искусственных сооружений, контактной сети и устройств СЦБ дол ...

Перестановка составов и групп вагонов из парка в парк
Технологическое время на перестановку состава из парка в парк (с пути на путь) определяется по формуле, мин: Тпер = Апер + Впер . п, (9.1) где Апер, Впер - нормативные коэффициенты, значения которых рассчитывают суммированием отдельных нормативов времени а и b, соответствующих длине полурейсов, вып ...


Навигация

Copyright © 2020 - All Rights Reserved - www.transpexplore.ru