Постановка задачи управления безопасным движением. Динамическое программирование

Информация » Задачи управления безопасным движением при встрече с препятствием и выбор метода решения » Постановка задачи управления безопасным движением. Динамическое программирование

Страница 5

Связь динамического программирования с вариационным исчислением и принципом максимума

Метод динамического программирования носит более универсальный характер, чем методы, основанные на принципе максимума и вариационном исчислении, поскольку он был разработан для оптимального управления процессами, не обязательно описываемыми системой дифференциальных уравнений. Вместе с тем этот метод не имеет строгого обоснования в ряде случаев по сравнению с принципом максимума и вариационным исчислением, хотя и тесно связан с ними.

Связь метода динамического программирования с вариационным исчислением. Пусть целевая функция зависит от скорости изменения фазовых координат. Тогда уравнение (1.10) можно записать в виде

Продифференцируем уравнение (1.12) по с учетом того, что функция Беллмана от не зависит:

Затем запишем полную производную по t:

Продифференцируем теперь уравнение (1.14) по ;

Вычитая из полученного результата предыдущее уравнение, приходим к уравнению Эйлера в вариационном исчислении

Заметим, это соотношение было получено в предположении о непрерывности частных производных второго порядка.

Пусть теперь граничное условие задачи в конечный момент времени есть соотношение

Тогда с учетом равенства (1.13) получим из (1.12) следующее соотношение, идентичное условию задачи с подвижным концом в вариационном исчислении:

Кроме того, можно убедиться, что уравнение (1.13) есть необходимое условие минимума для выражения в правой части (1.13), поскольку, во-первых, уравнение (1.13) есть частная производная от этого выражения по , приравненная к нулю. Во-вторых, дифференцируя по уравнение (1.13) вторично и учитывая равенство нулю производной от первого слагаемого, получаем еще одно необходимое условие минимума, состоящее в положительной определенности матрицы частных производных второго порядка, что совпадает с условием Лежандра в вариационном исчислении.

Можно также показать, что если экстремум в точке совпадает с абсолютным минимумом, т.е.

то это соответствует известному условию Вейерштрасса.

Связь метода динамического программирования с принципом максимума. Геометрическая интерпретация динамического программирования. Связь с функцией Ляпунова. Классическое описание данной взаимосвязи строится на том, что из уравнений динамического программирования при определенных допущениях выводятся результат ты, соответствующие принципу максимума. Основной смысл этих сопоставлений состоит в том, чтобы показать, что для применения динамического программирования нужны излишне жесткие требования, связанные с существованием непрерывных частных производных . Действительно, если для задачи с закрепленным временем ввести (n + 2)-мерную вектор-функцию

то уравнение Беллмана (1.10) можно записать в виде:

или так , что соответствует принципу максимума, если ввести функцию .

Если рассмотреть задачу максимального быстродействия, то, воспользовавшись уравнением (1.14) для автономных систем и продифференцировав его по , получим

Страницы: 1 2 3 4 5 6

Еще по теме:

Обеспечение пожарной безопасности на местах открытого хранения подвижного состава
При эксплуатации подвижного состава наиболее частыми причинами возникновения пожинок являются неисправность электрооборудования автомобиля, негерметичность системы питания, нарушение герметичности газового оборудования на газобаллонном автомобиле, скопление на двигателе грязи и масла, применение ле ...

Внимательность водителя
Внимательность - способность сосредоточить внимание на обнаруженном объекте опасности, сделать его полный обзор и оценить ситуацию. При средних высоких скоростях движения водитель может обозревать десятки объектов, но детально рассмотреть он может только один объект. Водителю важно уметь вовремя со ...

Рекомендации по организации рабочего места
Руководители предприятий, организаций и учреждений вне зависимости от форм собственности и подчиненности обязаны привести рабочие места пользователей ВДТ, ЭВМ и ПЭВМ в соответствии с требованиями вышеуказаных Санитарных правил. На основе проведенного анализа можно сделать вывод, что помещение экспл ...


Навигация

Copyright © 2021 - All Rights Reserved - www.transpexplore.ru