Постановка задачи управления безопасным движением. Динамическое программирование

Информация » Задачи управления безопасным движением при встрече с препятствием и выбор метода решения » Постановка задачи управления безопасным движением. Динамическое программирование

Страница 6

Первое слагаемое можно преобразовать, учитывая очевидное соотношение

откуда получаем следующий результат:

Видно, что в оба слагаемых входят одни и те же функции которые мы теперь «обозначим через . Тогда условие (1.14) для оптимального процесса приобретет вид,

что сразу же позволяет левую часть этого равенства обозначить через гамильтониан Н, а из соотношения (1.15) получить используемую в принципе максимума систему дифференциальных уравнений относи тельно вспомогательных переменных

Таким образом, результаты динамического программирования и принципа максимума совпадают, если ввести обозначения

или в векторной форме .

Рис. 1.2. Геометрическая интерпретация динамического программирования в задаче максимального быстродействия.

Это позволяет дать следующую геометрическую интерпретацию динамического программирования. На рис. 1.2 представлены поверхности изохрон S = const для задачи максимального быстродействия, причем величина S, по смыслу равная оставшемуся минимизируемому времени убывает по мере приближения к конечной точке, т.е.

При этом движение должно осуществляться в направлении убывания функции S, т.е. в направлении, противоположном ее градиенту внутрь изоповерхностей S = const. Из физических соображений очевидно, что движение вдоль нормали — самое быстрое по времени, так как движение вдоль изоповерхности не дает приближения к конечной точке.

С помощью функции Беллмана S можно дать и другую трактовку процессу ее убывания, связав ее с функцией Ляпунова. Действительно, если целевая функция положительно определена,

то, выразив уравнение (1.12) в виде

или

видим, что функция S есть функция Ляпунова.

Значит, если функция S положительно определена, то оптимальная система обладает еще одним замечательным свойством — она асимптотически устойчива, что особенно важно для нелинейных систем.

Отличие динамического программирования от других методов состоит в том, что если принцип максимума есть необходимое условие оптимальности, то уравнения динамического программирования при соблюдении всех требуемых допущений понимаются как достаточное условие. Необходимо также подчеркнуть, что в принципе максимума переменные мыслятся как функции времени, а в динамическом программировании это функции от фазовых координат, характеризующие чувствительность минимизируемого значения функционала к изменению текущего состояния .

Формально это требует решения нелинейных дифференциальных уравнений вида (1.9) или (1.10) в частных производных, что так же сложно, как и решение краевых задач в принципе максимума.

Страницы: 1 2 3 4 5 6 

Еще по теме:

Проектирование поперечного профиля
Поперечный профиль размещается на свободном месте справа от чертежа. Для построения поперечного профиля на рассматриваемом пикете проводится сечение, перпендикулярное оси главного пути, а также на этой линии назначаются вспомогательные точки на расстоянии 10 метров от осей крайних путей. Затем для ...

Анализ ПТБ
Производственно-техническая база ОГУП «Родниковское АТП» находиться в сравнительно удовлетворительно состоянии, что отвечает всем нормам ОНТП. Оборудование на данный момент хоть справляется с объемом выполняемых работ, но морально устарело. На предприятии хранение подвижного состава осуществляется ...

Расчёт количества автобусов, работающих на маршрутах
Количество автобусов на маршруте прямо пропорционально пассажирообороту, времени оборота автобуса на маршруте и обратно пропорционально вместимости автобусов. Количество автобусов на маршруте рассчитывается по формуле: , (7.1) где - коэффициент наполнения автобуса, 0,75. Для маршрута №1 (л) в перио ...


Навигация

Copyright © 2020 - All Rights Reserved - www.transpexplore.ru