Постановка задачи управления безопасным движением. Динамическое программирование

Информация » Задачи управления безопасным движением при встрече с препятствием и выбор метода решения » Постановка задачи управления безопасным движением. Динамическое программирование

Страница 6

Первое слагаемое можно преобразовать, учитывая очевидное соотношение

откуда получаем следующий результат:

Видно, что в оба слагаемых входят одни и те же функции которые мы теперь «обозначим через . Тогда условие (1.14) для оптимального процесса приобретет вид,

что сразу же позволяет левую часть этого равенства обозначить через гамильтониан Н, а из соотношения (1.15) получить используемую в принципе максимума систему дифференциальных уравнений относи тельно вспомогательных переменных

Таким образом, результаты динамического программирования и принципа максимума совпадают, если ввести обозначения

или в векторной форме .

Рис. 1.2. Геометрическая интерпретация динамического программирования в задаче максимального быстродействия.

Это позволяет дать следующую геометрическую интерпретацию динамического программирования. На рис. 1.2 представлены поверхности изохрон S = const для задачи максимального быстродействия, причем величина S, по смыслу равная оставшемуся минимизируемому времени убывает по мере приближения к конечной точке, т.е.

При этом движение должно осуществляться в направлении убывания функции S, т.е. в направлении, противоположном ее градиенту внутрь изоповерхностей S = const. Из физических соображений очевидно, что движение вдоль нормали — самое быстрое по времени, так как движение вдоль изоповерхности не дает приближения к конечной точке.

С помощью функции Беллмана S можно дать и другую трактовку процессу ее убывания, связав ее с функцией Ляпунова. Действительно, если целевая функция положительно определена,

то, выразив уравнение (1.12) в виде

или

видим, что функция S есть функция Ляпунова.

Значит, если функция S положительно определена, то оптимальная система обладает еще одним замечательным свойством — она асимптотически устойчива, что особенно важно для нелинейных систем.

Отличие динамического программирования от других методов состоит в том, что если принцип максимума есть необходимое условие оптимальности, то уравнения динамического программирования при соблюдении всех требуемых допущений понимаются как достаточное условие. Необходимо также подчеркнуть, что в принципе максимума переменные мыслятся как функции времени, а в динамическом программировании это функции от фазовых координат, характеризующие чувствительность минимизируемого значения функционала к изменению текущего состояния .

Формально это требует решения нелинейных дифференциальных уравнений вида (1.9) или (1.10) в частных производных, что так же сложно, как и решение краевых задач в принципе максимума.

Страницы: 1 2 3 4 5 6 

Еще по теме:

Выбор и обоснование типа промежуточной станции
В зависимости от расположения приемо-отправочных путей и грузовых устройств различают три основных типа промежуточных станций: с продольным, полупродольным и поперечным расположением приемо-отправочных путей. На выбор типа промежуточной станции оказывают влияние как факторы связанные непосредственн ...

Приближенный расчет и анализ замедления, тормозного и остановочного пути
В данном разделе изложим алгоритм, численные примеры, результаты приближенного расчета (т. е. без учета силы сопротивления воздуха и вращающихся масс) и анализа замедления, тормозного и остановочного пути. Представим численные примеры приближенного расчета тормозного пути при коэффициенте сцеплении ...

Аккумуляторная батарея
Единственная цель любой аккумуляторной батареи состоит в том, чтобы накапливать электроэнергию и отдавать ее по требованию. Независимо оттого, практичны электромобили или нет, все транспортные средства нуждаются в некотором устройстве, чтобы хранить энергию. Даже обычный автомобиль с двигателем вну ...


Навигация

Copyright © 2021 - All Rights Reserved - www.transpexplore.ru