Аналитическое конструирование регуляторов и применение для их синтеза динамического программирования

Информация » Задачи управления безопасным движением при встрече с препятствием и выбор метода решения » Аналитическое конструирование регуляторов и применение для их синтеза динамического программирования

Страница 1

Поскольку динамическое программирование наиболее близко к получению оптимального управления в замкнутой форме, нужно подробнее остановиться на задаче синтеза систем автоматического управления, удовлетворяющего при существующих ограничениях требуемому качеству. Одним из направлений в этой области является разработанный у нас в стране А.М. Летовым подход, названный аналитическим конструированием регуляторов, когда алгоритм управляющего устройства замкнутой системы находится аналитически в соответствии с определенным функционалом качества, соответствующим квадратическому критерию вида

Минимизация функционала (1.16) соответствует задаче о регуляторе состояния, когда важно удерживать около нуля все компоненты вектора состояния. Возможны другие варианты удержания около нуля некоторой ошибки, представляющей собой разность между желаемым и выходным сигналами в задачах слежения, но смысловое содержание структуры критерия остается неизменным. Первое слагаемое характеризует терминальную ошибку в конечный момент, второе слагаемое преследует цель обеспечить малость ошибки при удерживании системы в заданном положении. Последнее слагаемое представляет «штраф за большие управления» и оценивает затрачиваемую на управление энергию.

Соответственно положительно полуопределенные матрицы М, Р и положительно определенная матрица R выбираются с учетом значимости указанных факторов, преимущественно с ненулевыми диагональными элементами, либо, по желанию проектировщика, можно положить некоторые из матриц нулевыми. При этом, как правило, рассматривается линейный нестационарный объект, описываемый уравнениями

где на управление никаких прямых ограничений не наложено. В связи с этим для аналитического решения можно применять как вариационное исчисление, так и принцип максимума, но для получения решения в замкнутой форме воспользуемся методом динамического программирования. С учетом терминального члена функцией Беллмана S является функция

которая при не равна нулю.

С учетом (1.16) и (1.17) уравнение Беллмана имеет вид

При отсутствии ограничений на оптимальное управление вычислим производную от выражения в фигурных скобках и, приравняв ее нулю, получим

Поскольку матрица Д положительно определена, можно найти, во-первых, оптимальное управление

и, во-вторых, записать уравнение Беллмана без операции минимизации:

Уравнение (3.20) можно решить при условии .Можно показать [31], что уравнение (3.20) имеет точное аналитическое решение, которое представляет собой квадратичную форму

Страницы: 1 2

Еще по теме:

Расчет оси тормозного стенда
Ось рассматривают как двухопорную балку, свободно лежащую на двух опорах и нагруженную сосредоточенными силами, вызывающими изгиб. По конструкции оси составляют расчетную схему. Определяют реакции опор и методом сечений строят эпюру изгибающего момента. Устанавливают опасное сечение, для которого о ...

Управление тяговыми электродвигателями
Выше рассматривались системы объединенного регулирования мощности, в которых регуляторы управляют также ступенчатым ослаблением поля тяговых электродвигателей. Более часто управление ослаблением поля и переключением группировок тяговых двигателей осуществляется независимо от объединенного регулиров ...

Разработка технологического процесса ремонта системы кондиционионирования воздуха пассажирского вагона
Технологический процесс ремонта системы кондиционирование воздуха пассажирских вагонов устанавливает последовательность проведения работ, трудоемкость отдельных операций и календарные (посменные, почасовые) графики ремонта отдельных узлов или агрегатов. При составлении технологического процесса нео ...


Навигация

Copyright © 2019 - All Rights Reserved - www.transpexplore.ru