Аналитическое конструирование регуляторов и применение для их синтеза динамического программирования

Информация » Задачи управления безопасным движением при встрече с препятствием и выбор метода решения » Аналитическое конструирование регуляторов и применение для их синтеза динамического программирования

Страница 1

Поскольку динамическое программирование наиболее близко к получению оптимального управления в замкнутой форме, нужно подробнее остановиться на задаче синтеза систем автоматического управления, удовлетворяющего при существующих ограничениях требуемому качеству. Одним из направлений в этой области является разработанный у нас в стране А.М. Летовым подход, названный аналитическим конструированием регуляторов, когда алгоритм управляющего устройства замкнутой системы находится аналитически в соответствии с определенным функционалом качества, соответствующим квадратическому критерию вида стальной канат

Минимизация функционала (1.16) соответствует задаче о регуляторе состояния, когда важно удерживать около нуля все компоненты вектора состояния. Возможны другие варианты удержания около нуля некоторой ошибки, представляющей собой разность между желаемым и выходным сигналами в задачах слежения, но смысловое содержание структуры критерия остается неизменным. Первое слагаемое характеризует терминальную ошибку в конечный момент, второе слагаемое преследует цель обеспечить малость ошибки при удерживании системы в заданном положении. Последнее слагаемое представляет «штраф за большие управления» и оценивает затрачиваемую на управление энергию.

Соответственно положительно полуопределенные матрицы М, Р и положительно определенная матрица R выбираются с учетом значимости указанных факторов, преимущественно с ненулевыми диагональными элементами, либо, по желанию проектировщика, можно положить некоторые из матриц нулевыми. При этом, как правило, рассматривается линейный нестационарный объект, описываемый уравнениями

где на управление никаких прямых ограничений не наложено. В связи с этим для аналитического решения можно применять как вариационное исчисление, так и принцип максимума, но для получения решения в замкнутой форме воспользуемся методом динамического программирования. С учетом терминального члена функцией Беллмана S является функция

которая при не равна нулю.

С учетом (1.16) и (1.17) уравнение Беллмана имеет вид

При отсутствии ограничений на оптимальное управление вычислим производную от выражения в фигурных скобках и, приравняв ее нулю, получим

Поскольку матрица Д положительно определена, можно найти, во-первых, оптимальное управление

и, во-вторых, записать уравнение Беллмана без операции минимизации:

Уравнение (3.20) можно решить при условии .Можно показать [31], что уравнение (3.20) имеет точное аналитическое решение, которое представляет собой квадратичную форму

Страницы: 1 2

Еще по теме:

Расчет пропускной способности улицы
Пропускная способность улиц определяется для каждого отдельного участка. Пропускная способность нерегулируемого перекрестка характеризуется максимальным количеством транспортных средств, которое он может пропустить по всем направлениям движения за единицу времени. Пропускная способность пересечения ...

Статическое определение начала подачи топлива
При помощи оптического датчика с лампами, который заворачивается в базовое отверстие (рис 1 б), можно определить положение зубчатой сигнальной метки. В момент ее обнаружения загораются обе лампы. Угол начала подачи топлива можно считать по метке начала подачи, находящейся, например, на маховике. Ус ...

Корректирование трудоемкости ТО
Корректирование трудоемкости ТО-2 выполняем по формуле: (24) где: нормативная трудоемкость ТО-2, [1,табл.2.2]; коэффициент, учитывающий размеры АТП и число технологически совместимых групп п/состава, [1,табл.2.12]. Результаты расчета заносим в таблицу. Таблица 1.11. Корректирование трудоемкости ТО- ...


Навигация

Copyright © 2019 - All Rights Reserved - www.transpexplore.ru