Синтез оптимального линейного регулятора при встрече с протяженным неподвижным препятствием

Информация » Задачи управления безопасным движением при встрече с препятствием и выбор метода решения » Синтез оптимального линейного регулятора при встрече с протяженным неподвижным препятствием

Страница 1

Постановка задачи в рассматриваемом случае может быть формулирована следующим образом на примере управления речным транспортом:

Дано:

1. Заданы уравнения движения транспорта

2. Поступательное движение транспорта происходит с заданной постоянной скоростью v1, в результате чего меняется длина y пройденного пути.

3. Задан интегральный критерий качества (2.16) где (2.17)- подынтегральное выражение функционала J, учитывающего теперь штраф r3 за приближение к неподвижному препятствию;

- штраф за квадрат управления рулём ;

- штраф за отклонение от фарватера ;

- штраф за боковую скорость ;

- штраф за приближение к препятствию ;

- расстояние от фарватера до острова ;

- дистанция от управляемого объекта до острова;

- удаление от фарватера или боковой путь ;

- боковая скорость судна;

- параметры объекта управления;

- боковая скорость течения.

Требуется решить прямую задачу динамического программирования. В прямой задаче нужно найти функцию управления

4. Решение прямой задачи методом динамического программирования может быть получена следующим образом

Функция Беллмана записывается таким образом:

5. Запишем уравнение Беллмана и представив функцию Беллмана степенным полиномом:

(2.19)

Оптимизируем функцию Беллмана по параметру u , получаем таким образом:

(2.20)

Отсюда получим: (2.21)

Подставим (2.21) в выражение (2.20) получим :

Подставим функцию (2.22) в уравнение Беллмана (2.19) и представив правую часть уравнения Беллмана степенным рядом:

6. Приравнивая сомножители при одинаковых степенях, группируем их по степеням и получим систему дифференциальных уравнений

7. Заменим дифференциальные уравнения алгебраическими при:

После преобразования всех уравнений, если пренебрежем составным элементом в четвёртом уравнении системы (2.25), окончательно найдём нижеследующее решение:

Подставим два коэффициента решения (2.26) в выражение и получим :

Подставив полученную функцию в выражение (2.15), получим :

Проведем моделирование на ЭВМ движения судна на примере стабилизации бокового пути вблизи фарватера при условиях:

После подстановки всех вышеуказанных параметров в выражение (2.27) и уравнения (2.28) получим (см. рис.2.3 и рис.2.4)

Страницы: 1 2

Еще по теме:

Использование паровозов в тяговом хозяйстве России
Первыми локомотивами, которые стали применяться для тяги поездов по железнодорожным путям были паровозы. Обычно принято считать, что паровоз изобретен английским инженером Георгом (Джорджем) Стефенсоном. Действительно, этим талантливым человеком в период 1814 - 1828 гг. было построено несколько пар ...

Факторы использования различных видов транспорта
Осуществление перевозок различными видами транспорта зависит от целого ряда факторов, основными из которых являются следующие: - характер и уровень развития материально-технической базы конкретного вида транспорта, определяющие его возможности освоения предъявляемых перевозок; - размещение транспор ...

Охрана окружающей среды
Среди вредных для здоровья человека факторов значительное место занимает загрязнение воздуха выхлопными газами - маслами и топливом, шумовое загрязнение, смог. Эти явления вызывает автотранспорт, теплоэнергетические системы и промышленность. В городах сосредоточена основная масса транспортных средс ...


Навигация

Copyright © 2019 - All Rights Reserved - www.transpexplore.ru